

Home Search Collections Journals About Contact us My IOPscience

Electron spin resonance observation of Si dangling-bond-type defects at the interface of (100) Si with ultrathin layers of SiO_x, AI_2O_3 and ZrO_2

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2001 J. Phys.: Condens. Matter 13 L673 (http://iopscience.iop.org/0953-8984/13/28/103)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.226 The article was downloaded on 16/05/2010 at 13:56

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 13 (2001) L673–L680

PII: S0953-8984(01)24481-6

LETTER TO THE EDITOR

Electron spin resonance observation of Si dangling-bond-type defects at the interface of (100) Si with ultrathin layers of SiO_x , Al_2O_3 and ZrO_2

A Stesmans and V V Afanas'ev

Department of Physics, University of Leuven, 3001 Leuven, Belgium

Received 2 May 2001 Published 29 June 2001 Online at stacks.iop.org/JPhysCM/13/L673

Abstract

Paramagnetic point defects were probed by electron spin resonance in stacks of (100) Si with nm-thin SiO_x, ZrO₂ and Al₂O₃ layers. After photodesorption of passivating hydrogen (300 K; 8.48 eV), the Si dangling bond type interface centres P_{bo}, P_{b1} appear as prominent defects at all (100) Si/dielectric interfaces, with P_{bo} densities up to ~6 × 10¹² cm⁻². This P_{bo}, P_{b1} fingerprint, generally unique for the thermal (100) Si/SiO₂ interface, indicates that, while reassuring for the Si/SiO_x/ZrO₂ case, the as-deposited (100)Si/Al₂O₃ interface is basically Si/SiO₂-like. As probed by the P_b-type defects, the interfaces are under substantially enhanced stress, characteristic for low-temperature Si/SiO₂ growth. Standard quality thermal Si/SiO₂ interface properties, as exposed by the P_b-type defects (density ~1×10¹² cm⁻²), may be approached by appropriate mild annealing (~650 °C). This fact of a naturally present or possibility to establish a high quality (100) Si/SiO₂-type interface, with ultrathin SiO₂ interlayer, may be basic to successful application of high- κ metal oxides in Si-based devices.

The incessant trend in down-scaling continuously reemphasizes the vital role of the gate dielectric in metal–oxide–silicon (MOS) devices. One implication of this drastic lateral scaling is that to maintain efficient signal transmission, compensation for the lost areal gate capacitance is mandatory, which may be realized by reducing the gate oxide thickness and/or enhancing the dielectric permittivity $\varepsilon = \kappa \varepsilon_0$. So far, thermal SiO₂—an insulator natural to Si—has served as unsurpassed gate dielectric with such unique and superb properties that stretching its usage as far as possible appears natural. Yet, with the projected SiO₂ thicknesses in the sub-2 nm range for the near future [1], the application of this foremost insulator in MOS devices faces fundamental limits such as excessive direct (tunnelling) leakage current, boron penetration, electron mobility degradation and reliability problems [1, 2]. This has stimulated enhanced research in replacing SiO₂ with an alternative layer of high dielectric constant (κ) for future MOS generations. The application of higher- κ insulators should enable usage of thicker films of equivalent SiO₂ electrical thickness (EOT, defined as $d_{EOT} = d_{high-\kappa} \varepsilon_{SiO_2}/\varepsilon_{high-\kappa}$) with an expected reduction in leakage current and improved gate reliability.

The research enjoys accelerating interest [3, 4], with an immense arsenal of complementary high sensitivity analysing techniques being applied in conjunction to explore microstructural, compositional, and bonding chemistry aspects of ultrathin (sub-5 nm) high- κ films on Si [5–8]. Applied techniques include medium-energy ion scattering (MEIS), high-resolution transmission electron microscopy (HRTEM), nuclear resonance profiling (NRP) and x-ray photoelectron and Auger spectroscopy. Also, using electrical techniques, such as capacitancevoltage (C-V) and current-voltage (I-V), the investigation of the electrical performance (transport, charge trapping, presence of detrimental electrically active interface traps) has received much attention [8–10]. Inherent to these methods, however, little is revealed about the atomic nature of crucial point defects related to or at the origin of observed electrical deficiencies. Yet, as amply documented for the Si/SiO_2 structure, point defects have been demonstrated or hinted as the origin of a realm of detrimental aspects, such as adverse interface traps, oxide fixed charge, irradiation-induced degradation, stress-induced leakage current and thermally induced oxide breakdown. A most vital issue is the quality of the c-Si/insulator interface, particularly as regards the presence of electrically active inherent defects [11]. So, analysing the likely altered interface situation in c-Si/alternative dielectric structures vis-à-vis standard c-Si/SiO₂ may appear of interest for advancing semiconductor device technology.

One intensely investigated alternative dielectric is ZrO_2 ($\kappa \sim 20$). Here, in a complementary approach, electron spin resonance (ESR)—the technique of choice for atomic identification of defects—is applied to stacks of ultrathin SiO_x and Al₂O₃ films sandwiched between (100) Si and thin ZrO₂ layers, with the aim of providing atomic identification and quantification. The known characteristics of the amply studied Si/SiO₂ structure are used as a backdrop. Among other things, it is revealed that the ruling paramagnetic inherent interface defects in Si/SiO₂, i.e. P_b-type centres, also appear as major players at the interface of (100) Si with ultrathin Al₂O₃ and SiO_x layers.

The P_b-type centres have received intense research interest (see, e.g. [11–14]). In short, these are mismatch-induced inherent point defects at the Si/SiO₂ interface, correlating with interface orientation. Three types are common [11]: P_b (identified as Si₃ \equiv Si[•]) in (111) Si/SiO₂, and P_{bo}, P_{b1} (a (211)-oriented Si₃ \equiv Si[•] [15, 16]) in (100) Si/SiO₂. All three variants were shown to be trivalent Si centres, with P_b and P_{bo} demonstrated as chemically identical [17, 18] and both conclusively established as adverse electrical interface traps [13, 19]. For standard oxidation temperatures *T* (800–960 °C), areal densities of physical defect sites (including both ESR active and inactive ones) of [P_b] ~ 5 × 10¹² cm⁻² and [P_{bo}], [P_{b1}] ~ 1 × 10¹² cm⁻² are naturally incorporated [14, 20].

Samples studied were Si/SiO_x/ZrO₂ and Si/Al₂O₃/ZrO₂ stacks, prepared on low-doped one-side polished 8 inch (100) Si wafers (p type; $n_a \sim 10^{15}$ cm⁻³; 0.8 mm thick) last cleaned in aqueous HF (5% by volume) prior to dielectric layer deposition. Uniform stoichiometric ultrathin layers of Al₂O₃ (~0.5–3 nm) and ZrO₂ (5–20 nm), as well as ultrathin SiO_x layers, were deposited at 300 °C in an atomic layer chemical vapour deposition (ALCVD) reactor (hot-wall flow type F-450 reactor, ASM Microchemistry Ltd, Finland) using Al(CH₃)₃ and H₂O and ZrCl₄ and H₂O as precursors, respectively, at a pressure of ~1 Torr. The SiO_x layers (~5 Å) were grown in H₂O at 300 °C for 20 min. The ALCVD technique, with inherent thickness and uniformity control, allows the deposition of ultrathin dielectric layers with excellent step coverage and thickness uniformity; it attains nearly atomic layer accuracy. More details can be found elsewhere [8]. From these wafers, slices of 2 × 9 mm² main area, appropriate for ESR, were cut with their 9 mm edge along a [011] direction. After initial ESR diagnosis, some samples were submitted to mild annealing at ~650 °C in vacuum (<4 × 10⁻⁶ Torr) or dry O₂ (99.9995%; ~1.1 atm).

The interest in inserting interlayers (Al_2O_3, SiO_x) derives from various sides. On the basic

physics side, e.g., as to ZrO_2 , one may try to improve on the much-reduced conduction band offset with respect to Si of ZrO_2 ($2.0 \pm 0.1 \text{ eV}$) [21] as compared to SiO₂ ($3.15 \pm 0.05 \text{ eV}$), in order to reduce Schottky emission leakage currents. On the chemical-manufacturing side, there is the influence of the growth base on the film deposition characteristics. Regarding ALCVD of ZrO_2 layers, it has been found that the nucleation on H-terminated last HF dipped (100) Si surfaces is inhibited [7], resulting in nonuniform and discontinuous films. However, after pregrowth of a thin thermal oxide, uniform ZrO_2 film growth is observed, with an abrupt interface between SiO₂ and ZrO_2 . Finally, in a more general context, investigation of the impact of interlayers may be desirable in the light of the concern that fabrication of whatever Si/metal oxide structure may always be attendant, to a greater or lesser extent, with the occurrence, however thin, of some chemically intermixed transitional layer threatening the aimed 'ideal' abrupt transition.

It is a general property of paramagnetic point defects they are prone to ESR inactivation (at moderate temperatures) though binding with H, a phenomenon well known [12, 22] for the Si dangling-bond-type defects P_b , P_{bo} and P_{b1} at Si/SiO₂ interfaces (see also E'-type defects in Si/SiO₂ physics [23]). Hence, given the particular ALCVD fabrication technique (H-rich ambient), it is anticipated that most point defects will be left effectively passivated (invisible for ESR). In the case of P_b -type defects, the standard method to efficiently detach H is thermal treatment at elevated T (typically ~600 °C; ~1 h). Clearly, however, such a step might irreversibly alter the initial physicochemical structure of interfaces and dielectric layers, with embedded defects, thus marring the study of the initial state. Rather than, as the preferred method, prior to ESR observations, samples were generally subjected to 8.48 eV VUV irradiation obtained from a Xe resonant discharge lamp (flux 5×10^{14} cm⁻² s⁻¹; ~5 min; 300 K) in air to photo-dissociate H-terminated dangling bonds [24] and/or possibly unveil non-ideal (strained, weak) bonding. The method has been demonstrated to be most efficient for both oxide and interface defects in Si/SiO₂. The front side interfaces and dielectric layers are found not to be affected by the VUV treatment, except for the ESR defect activation.

Conventional CW absorption-derivative K-band (~20.2 GHz) ESR analysis was carried out at 4.3 K under conditions of adiabatic slow passage [14]. The applied magnetic field **B** was rotated in the ($\overline{011}$) Si substrate plane with φ_B , the angle of **B** with the [100] interface normal **n**, varying in the range 0°–90° (accuracy ~0.1°). Spin densities were determined relative to a comounted intensity marker through double numerical integration of the detected derivative-absorption spectra d P_{μ}/dB , recorded in one trace. The attained absolute and relative accuracy is estimated at ~10 and 5%, respectively. The backside of the samples was HF dipped immediately before starting ESR measurements. Typically, an ESR sample bundle comprised ~10 slices.

Figure 1 shows ESR spectra observed at 4.3 K on Si/Al₂O₃ (0.5)/ZrO₂ (5 nm). As anticipated, only weak signals could be observed in the as-deposited state. However, signals do appear prominently upon VUV irradiation. For $B \parallel n$ (i.e. $\varphi_B = 0^\circ$), two clear signals are observed: a prominent one at $g = 2.0059 \pm 0.0001$, with peak-to-peak width $\Delta B_{pp} = 9.7 \pm 0.4$ G, and a weaker one characterized by $g = 2.00375 \pm 0.0001$ and $\Delta B_{pp} = 3.75 \pm 0.2$ G, with spin densities ($S = \frac{1}{2}$) determined as 5.9 ± 0.3 and $(1.5 \pm 0.2) \times 10^{12}$ cm⁻², respectively (intensity ratio $R \sim 3.9$).

The signals exhibit distinct anisotropy, as evidenced by spectrum (b) in figure 1. These properties are reminiscent of the well known P_{bo} and P_{b1} centres at the thermal Si/SiO₂ interface. Field angular dependent measurements (**B** in the (011) plane) resulted in the *g*-map data shown in figure 2. The curves represent the various *g* branches of the P_{bo} and P_{b1} centres as inferred from previous work [17] on conventional (100) Si/SiO₂, with principal *g* values $g_{\parallel} = 2.00185$, $g_{\perp}2.0081$ for P_{bo} (axial symmetry; solid curves) and $g_1 = 2.00577$,

magnetic field (G)

Figure 1. Derivative-absorption ESR spectra observed at 4.3 K for two directions of *B* in the (011) plane on a (100) Si/Al₂O₃ (0.5)/ZrO₂ (5 nm) stack, grown by the ALCVD method at 300 °C using H₂O, Al(CH₃)₃ and ZrCl₄ as precursors, after RT VUV irradiation (8.48 eV; ~5 min) to detach H from passivated defects, clearly revealing the presence of P_{bo}, P_{b1} defects at the Si/Al₂O₃ interface. The signal at g = 1.998 69 stems from a comounted Si:P marker sample. The applied modulation field amplitude was 0.4 G, and incident $P_{\mu} \sim 2$ nW.

 $g_2 = 2.00735$, $g_3 = 2.0022$ for P_{b1} (monoclinic-I point symmetry; dotted curves). The agreement leaves little doubt about the P_{bo} , P_{b1} origin of the signals. Also, the estimated relative signal (branch) intensities for the various equivalent defect orientations comply with the prescribed ones, i.e. 1:2:1 indicated on the figure, for both defect types. As is the case for Si/SiO₂, this strict crystallographic correlation with the Si substrate implies the defects pertain to the (100) Si/Al₂O₃ interface. Of course, there is also the second internal Al₂O₃/ZrO₂ interface. But the amorphous nature of both metal oxide films excludes involvement of the observed defects with this transition. This conclusion is affirmed by the study of simple (100) Si/Al₂O₃ (3 nm) ALCVD structures, exhibiting an identical P_{bo}/P_{b1} pattern.

Similar observations were made on the (100) Si/SiO_x (0.5)/ZrO₂ (5 nm) structure, i.e. observation of a prominent P_{bo} signal and a weaker P_{b1} signal, yet with two noticeable differences. First, as compared to the Si/Al₂O₃ (0.5)/ZrO₂ (5 nm) case, the signals are narrower, i.e. $\Delta B_{pp} = 6.8 \pm 0.4$ and 3.5 ± 0.2 G, for P_{bo} and P_{b1}, respectively. Second, relative to the P_{bo} signal (density = 4.3×10^{12} cm⁻²), the P_{b1} signal is weaker ($R \ge 9$). The observed linewidths may be compared with those observed in thermal Si/SiO₂ grown at T > 900 °C, given as $\Delta B_{pp} = 6.0 \pm 0.2$ and 3.3 ± 0.2 G for P_{bo} and P_{b1}, respectively. It thus appears that as compared to standard Si/SiO₂, the linewidths observed in the structures here are broadened, the more so for the Si/Al₂O₃ (0.5)/ZrO₂ (5 nm) stack. Interestingly, as reported previously, this signature, i.e. presence of a strong P_{bo} bath with strongly reduced P_{b1} signal as compared to thermal Si/SiO₂ and broadened lines, is the one typical for thermal Si/SiO₂ interfaces grown at low *T*. This is illustrated in figure 3, showing an ESR spectrum ($B \parallel n$) from a (100) Si/SiO₂ entity grown at 260 °C (1 atm O₂; ~160 min), with observed P_{bo} density of ~5 × 10¹² cm⁻² and $R \sim 8$, close to the values reported for the (100) Si/SiO_x/ZrO₂ entity.

Figure 2. Angular dependence of the *g* values of the resonances observed in an ALCVD-grown (100) Si/Al₂O₃ (0.5)/ZrO₂ (5 nm) structure after 300 s VUV irradiation at 300 °C for *B* rotating in the (011) plane. The curves represent the various *g*-map branches previously inferred for the P_{bo} and P_{b1} defects in standard thermal (100) Si/SiO₂, with principal values $g_{\parallel} = 2.001 85$, $g_{\perp} = 2.0081$ for P_{bo} (axial symmetry; solid curves) and $g_1 = 2.005 77$, $g_2 = 2.007 35$, $g_3 = 2.0022$ for P_{b1} (monoclinic-I point symmetry; dotted curves). The exposed agreement demonstrates the observed signals to originate from P_{bo}, P_{b1} defects residing at the Si/Al₂O₃ interface. The added numbers indicate expected relative branch intensities.

For comparison, also shown is a spectrum (a) from a more conventional Si/SiO₂ structure grown at \sim 800 °C.

Besides excessively broadened, it is also clear from figure 1 that the P_{bo} , P_{b1} linewidth is field angle dependent, a well known characteristic first clearly quantified for P_b in (111) Si/SiO₂ [25], and later also for P_{bo} [17]. It refers to the presence of a spread in g, inferred as originating from mismatch (stress) induced local variations in the defect morphology over the various P_{bo} sites [14]. The φ_B dependence is predominantly ascribed to a strain-induced (supposedly) Gaussian distribution of spread $\sigma_{g\perp}$ in g_{\perp} . As to P_b , though not expected into first order [25, 26], it has been demonstrated there also exists a spread $\sigma_{g\parallel}$ in g_{\parallel} [14], albeit significantly smaller than $\sigma_{g\perp}$. Hence, the excessive broadening of the P_{bo} signal may be quantified in terms of variations in g spread. Neglecting to a good approximation any $\sigma_{g\parallel}$ contribution, we obtain from an analysis along the lines outlined elsewhere [17], the values $\sigma_{g\perp}$ (P_{bo}) = 0.0011\pm0.0001 and 0.001 75 ± 0.000 15 for the structures (100) Si/SiO_x (0.5)/ZrO₂ (5 nm) and Si/Al₂O₃/ZrO₂, respectively. As compared to the value $\sigma_{g\perp} = 0.000 95 \pm 0.000 05$ for thermal (100) Si/SiO_x [17], we thus find enhanced stress, in particular for the Si/Al₂O₃ interface.

Interestingly, upon annealing at \sim 650 °C in O₂, the Si/insulator interface in both the structures Si/SiO_x/ZrO₂ and Si/Al₂O₃/ZrO₂, as revealed by the specific the P_{bo}, P_{b1} signature,

Figure 3. Curve (b): P_b, P_{b1} ESR spectrum observed at 4.3 K for $B \parallel [100]$ surface normal on thermal (100) Si/SiO₂ (260 °C; 1 atm O₂; ~160 min), with [P_{bo}] ~ 5 × 10¹² cm⁻². Top spectrum: thermal (100)Si/SiO₂ grown at ~800 °C, with P_{bo} and P_{b1} spin densities inferred as ~1.6 and 1.9×10^{12} cm⁻². Applied magnetic field modulation amplitude was 0.3 G; P_µ ~ 0.25 nW.

reshapes to that of a standard high-quality thermal Si/SiO₂: the linewidths narrow to standard values, while densities reduce to standard low values of $\sim 1 \times 10^{12}$ cm⁻² for both defects. It is important to remark here that the appearance of the standard P_{bo}, P_{b1} signature serves as a unique ESR criterion signalling a high-thermal-quality Si/SiO₂ interface; the interface of technological quality must exhibit its standard P_{bo}, P_{b1} fingerprint.

The observations bear out various noteworthy aspects. (1) At the Si substrate/insulator interface in ALCVD-grown (100) Si/SiOx/ZrO2 and Si/Al2O3/ZrO2 structures, the Pbo and P_{b1} defects—archetypal for a standard thermal (100) Si/SiO₂ interface—appear as predominant ESR-active centres. (2) While their occurrence might probably have been anticipated for the latter structure, their manifest presence at the (100) Si/Al_2O_3 interface reveals that, for an essential part, the basic nature of this interface is also (100) Si/SiO₂ type, from whereon the dielectric evolves to stoichiometric Al_2O_3 . (3) As stated, the nominal thickness of the SiO_x interlayer in the as-grown ALCVD (100) Si/SiO_x/ZrO₂ structure is 0.5 nm. Though ESR is little informative here, such a layer in the case of (100) Si/Al_2O_3 is likely thinner. In fact, it might just concern an oxygen monolayer case, as depicted in the particular ALCVD growth mechanism of Al_2O_3 using $Al(CH_3)_3$ and H_2O precursors [27]. Here, the starting surface is an OH-passivated (Si–OH) Si surface, with the OH groups constituting the reactive sites for subsequent attack by trimethylaluminium molecules. As sketched, the interlayer just consists of a uniform singular Si-O-Al transitional layer (no direct Si-Al bonds), thus constituting a most ideal abrupt interface. But it is then probably inappropriate to refer to this as an SiO_x layer. When grown on last HF cleaned (100) Si surfaces, abrupt interfaces are affirmed by combining NRP and MEIS depth profiling techniques [7]. Furthermore, the interface appears stable against rapid thermal annealing (RTA) in vacuum up

to 800 $^{\circ}$ C [5]. Physical abruptness of the Si/Al₂O₃ interface is also hinted from measurements of the effective image-force dielectric constant using internal photoemission spectroscopy [21]. Aiming low EOT, such abruptness is very favourable within the semiconductor device context, for any such layer should be kept as thin as possible.

However, the present ESR data would indicate the situation to be less than ideal. First, a substantial number of Si DB-type interface defects (P_{bo} , P_{b1}) ($\sim 7 \times 10^{12}$ cm⁻²; that is, a fractional Si site occupancy of $\sim 1\%$ when referred to a singular (100) Si plane, about three to four times larger than in standard thermal (100) Si/SiO₂) is detected. Second, the observed P_{bo} , P_{b1} ESR character (densities, line width) is the one typical for a (strained) low-temperature grown 'thermal' Si/SiO_x, the interface being under enhanced strain. It may then be hard to envision that a well ordered singular Si–O–Al transitional layer would exhibit such Si/SiO_x character. P_b -type defects are incorporated at the Si/SiO₂ interface to account for interfacial stress, which situation will differ for the two cases. Viewed from a different angle, however, should they occur identically in an ordered single Si–O–Al transitional layer, formation of P_b -type defects would not require the presence of an SiO_x cap, which then must have repercussions as to the insight in the generation of such defects.

Here, with respect to Si/SiO₂, it might be useful to add one more remark. Referring to the very thin transitional layer involved, one might feel tempted to relate the particular P_{bo} , P_{b1} character, i.e. broadened signals, enhanced defect densities, as compared to more standard Si/SiO₂ ($d_{ox} > 5$ nm) to the ultrasmall thickness of the SiO_x-type layer *per se*. However, as outlined previously, the very thickness appears no to be the issue. Rather, what matters is enhanced interfacial stress (unrelaxed state) inherent to low-*T* fabrication [28].

As probed by the hallmark P_{bo} , P_{b1} ESR character, with potential realization of standard low defect densities of $(1-1.3) \times 10^{12}$ cm⁻², it is thus found that the transition of Si with ZrO₂ and Al₂O₃ layers may be endowed with the properties of the unsurpassed (100) Si/SiO₂ interface: either it may be successfully tailored by deliberately inserting an ultrathin (≤ 0.5 nm) SiO_x interlayer, or else, as is the case for Si/Al_2O_3 , it may appear inherently after appropriate postdeposition thermal treatment. The Si/SiO_2 -type interface is both ultrathin, as required by current demands on low EOT, and of standard Si/SiO₂ quality. This apparently natural fact may constitute a fundamental boost for successful application of high- κ metal oxides in future Si-based devices. But, of course, besides notorious benefits, the presence of the Si/SiO₂type transition will also pose technological challenges, such as, over the numerous steps in device fabrication, maintaining the interlayer's ultrathin thickness and averting silicide/silicate formation. The latter may result in inferior quality of both interface and dielectric, e.g. introducing an unacceptable density of conduction band tail states [21]. Investigations by NRP and XPS on Si/Al_2O_3 indicate that aluminosilicate starts forming under RTA in O_2 at $T \ge 700 \,^{\circ}$ C [5]. ZrO₂, in contact with Si, becomes thermodynamically unstable under RTA above 900 °C in vacuum or O₂ (2 min; 0.1 Torr) [7]. In Si/SiO_x/ZrO₂, the SiO_x interlayer thickness is found to increase substantially upon oxidation at 700 °C (15 min) [8].

In summary, paramagnetic defects in (100) Si/SiO_x/ZrO₂ and (100) Si/Al₂O₃/(ZrO₂) structures with nm-thin layers grown at 300 °C by the ALCVD method using trimethylaluminium, ZrCl₄ and H₂O as precursors, have been probed by ESR. In the as-grown state, there is substantial passivation of defects by hydrogen. After H drive-off, prominent P_{bo}, and P_{b1} signals—generally the unique ESR fingerprint of an Si/SiO₂ interface—are observed at the Si/insulator interface in all stacks. While suggestively expected for the former structure, it reveals the Si/Al₂O₃ interface, in terms of inherent interface defects, also to be basically Si/SiO₂ type. It heralds the potential to carrying over of the applauded (100) Si/SiO₂ properties towards the Si/metal oxide entities, which may be essential to successful application of high- κ metal oxides in technology. In the as-grown state, the spectroscopic properties of the P_{bo},

 P_{b1} defects bear out enhanced stress at the pertinent interfaces, inherent to low-*T* fabrication. Generally, as to the Si/high- κ metal oxide structures, the basic ESR story turns out to be another P_b -type interface defect saga, where we can beneficially draw upon the immense amount of information assembled for standard thermal Si/SiO₂.

References

- See, e.g., Green M, Sorsch T, Timp G, Muller D, Weir B, Silverman P, Moccio S and Kim Y 1999 Microelectron. Eng. 48 25
- [2] Lo S H, Buchanan A, Taur Y and Wang W 1997 IEEE Electron Device Lett. 18 209
- [3] Lucovsky G et al 1999 Appl. Phys. Lett. 74 2005
- Lu H C, Yasuda N, Garfunkel E, Chang J P, Opila R L and Alers G 1999 Microelectron. Eng. 48 287
- [4] Robertson J 2000 J. Vac. Sci. Technol. B 18 1785
- [5] Krug C R, da Rosa E B O, de Almeida R M C, Morais J, Baumvol I J R, Salgado T D M and Stedile F C 2000 Phys. Rev. Lett. 85 4120
- [6] Gusev E P, Copel M, Cartier E, Baumvol I J R, Krug C and Gribelyuk M A 2000 Appl. Phys. Lett. 76 176
- [7] Copel M, Gribelyuk M and Gusev E 2000 Appl. Phys. Lett. 76 436
- [8] Houssa M, Naili M, Zhao C, Bender H, Heyns M M and Stesmans A 2001 Solid State Commun. 16 31
- [9] Fukumoto H, Morita M and Osaka Y 1989 J. Appl. Phys. 65 5210
- [10] Houssa M, Tuominen M, Naili N, Afanas'ev V, Stesmans A, Haukka S and Heyns M M 2000 J. Appl. Phys. 87 8615
- [11] See, e.g., Helms R and Poindexter E H 1998 Rep. Prog. Phys. 83 2449
- [12] Bowker K 1988 Phys. Rev. B 38 9657
- [13] Poindexter E H 1989 Semicond. Sci. Technol. 4 961
- [14] Stesmans A 1993 Phys. Rev. B 48 2418
- [15] Stesmans A, Nouwen B and Afanas'ev V 1998 Phys. Rev. B 58 15 801
- [16] Stirling A, Pasquarello A, Charlier J-C and Car R 2000 Phys. Rev. Lett. 85 2773
- [17] Stesmans A and Afanas'ev V V 1998 J. Appl. Phys. 83 2449
- [18] Gabrys J W, Lenahan P M and Weber W 1993 Microelectron. Eng. 22 273
- [19] Stesmans A and Afanas'ev V V 1998 Phys. Rev. B 57 10 030
- [20] Stesmans A and Afanas'ev V V 1998 J. Vac. Sci. Technol. B 16 3108
- [21] Afanas'ev V, Houssa M, Stesmans A and Heyns M 2001 Appl. Phys. Lett. 78 3073
- [22] Stesmans A 1996 Appl. Phys. Lett. 68 2076
- [23] See, e.g., Griscom D 1958 J. Appl. Phys. 58 2524 and references therein Edwards A H 1995 J. Non-Cryst Solids 187 232
- [24] Pusel A, Wetterauer U and Hess P 1998 Phys. Rev. Lett. 81 645
- [25] Brower K L 1986 Phys. Rev. B 33 4471 Stesmans A and Braet J 1986 Insulating Films on Semiconductors ed J J Simone and J Buxo (Amsterdam: North-Holland) p 25
- [26] Watkins G D and Corbett J W 1964 Phys. Rev. 134 A1359
- [27] Suntola T 1996 Appl. Surf. Sci. 100/101 391
- [28] Stesmans A and Afanas'ev V V 2000 Appl. Phys. Lett. 77 1469